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Abstract
A quantum dimer model (QDM) on the kagome lattice with an extensive ground-
state entropy was recently introduced (Misguich et al 2003 Phys. Rev. B 67
214413). The ground-state energy of this QDM in the presence of one and
two static holes is investigated by means of exact diagonalizations on lattices
containing up to 144 kagome sites. The interaction energy between the holes
(at distances up to seven lattice spacings) is evaluated and the results show no
indication of confinement at large hole separations.

1. Introduction

Quantum dimer models (QDM) can provide some effective descriptions of the low-energy
singlet dynamics of frustrated quantum antiferromagnets [1]. A basis of the Hilbert space
of these models is made up by all (nearest-neighbour) dimer coverings of the lattice and the
Hamiltonian allows these dimers to move along local resonance loops. Two kinds of phase are
well understood for these models in two dimensions: dimer crystals [1] and resonating-valence-
bond (RVB) dimer liquids [2, 3]. Crystals are characterized by long-ranged dimer–dimer
correlations and spontaneous lattice symmetry breaking and RVB liquids show no broken
symmetry but topological order and Z2-vortex excitations [4]. Importantly also, these two
phases can be distinguished by the behaviour of holes (or spinons) when the system is ‘doped’;
that is, we allow sites which are not occupied by any dimer. Holes experience a mutual
interaction which grows linearly with their separation in a dimer crystal and this interaction
confines them in pairs. On the other hand, they propagate independently in a RVB liquid
background. A first and simple step is to consider QDM with static holes (non-magnetic
impurities or spinons). In that case a relevant quantity is the ground-state energy as a function
of the hole positions. This energy goes to a constant when two holes are far apart in a deconfined
system whereas it grows linearly in a confined system1.

1 QDM at Rokhsar–Kivelson points [1] are an exception: the ground-state energy remains exactly zero whatever the
positions of the holes.
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We recently proposed a QDM on the kagome lattice which does not simply fall into either
of these two categories [5]. This model, hereafter called the µ model, was introduced from
the observation that the dimer kinetic energy terms arising from an overlap expansion of the
spin- 1

2 Heisenberg model [1] generally have non-trivial signs as soon as the competition of
resonance loops with different lengths is considered [6]. The Hamiltonian is

H = −
∑

h

µh (1)

where

µh =
32∑

α=1

(−1)nα |dα(h)〉〈d̄α(h)| + H.c. (2)

and h runs over the hexagons of the lattice and |dα(h)〉 is one of the 32 possible dimerizations
of h (table 1). The sign nα counts the parity of the number of dimers involved2. It was realized
that such signs can lead to a new state, different from dimer crystals or RVB liquids. In our
previous study [5] the following results were obtained:

(i) The µ model has an extensive ground-state entropy 1
6 log(2) per kagome site, that is 50%

of the classical dimer entropy. This exponentially large degeneracy comes from a hidden,
local, but non-Abelian symmetry of the model.

(ii) It is possible to choose a basis of the ground-state manifold such that dimer–dimer
correlations are short ranged in each state. These ground states are thus dimer liquids.

(iii) On the basis of exact diagonalizations we argued that, in addition to the ground state
having degeneracy, the spectrum is likely to be gapless and energy–energy correlations
(as well as susceptibilities) are likely to be critical.

In the present work we investigate numerically the effect of static holes in the µ model.
This issue is of particular importance, as Dommange et al [8] pointed out in a recent work
that static holes in the spin- 1

2 kagome antiferromagnet experience a short-distance repulsion
and are probably deconfined at larger distances. Sindzingre et al [7] previously reached a
similar conclusion about spinon deconfinement from an analysis of the value of the spin gap
in a 24-site sample with two holes. We show in this paper that a somewhat similar behaviour
is observed in the µ QDM.

2. µ model with holes

Like any QDM, the µ model can be extended to include static holes. These holes can equally
represent charge degrees of freedom or neutral spinons (unpaired spin in a dimer background).
The new Hamiltonian H′ contains all the kinetic terms of H except those where the resonance
loop passes through a missing site. Consider a hole which belongs to two hexagons 1 and
2 (figure 1). No loop of µ1 or µ2 survives in H′ because they would all pass through the
missing site. As for hexagons 3 and 4, one half of their resonance loops pass through the hole
and must be removed. In the presence of a hole the operators µ3 and µ4 thus only contain
16 resonance loops (instead of 32). However, these two modified operators satisfy the same
algebraic relations [5] as the hole-free µ. For any hexagon h �= 1, 2 and for i = 3 or 4 we
have µ2

i = 1 and

µiµh = µhµi h not a neighbour of i (3)

µiµh = −µhµi h neighbour of i. (4)

2 In the absence of that sign the model reduces to that of [3] and can be solved exactly; it has a RVB liquid ground
state with topological order and gapped Z2-vortex excitations.
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Table 1. The eight different classes (up to rotations) of dimerizations of a hexagon of the kagome
lattice.

These relations are easy to check with the help of the arrow representation of dimer coverings of
the kagome lattice [3, 5, 9]. It is also easy to check that the argument leading to an exponential
degeneracy ∼2N/6 of the energy levels [5] holds even in the presence of these static holes. As
a first result we thus find that the extensive ground-state entropy of the µ model survives in
the presence of holes. This also allows one to use the reduced representation of the Hilbert
space which was used in [5] to compute the spectrum in the absence of holes. The spectrum is
non-degenerate in this representation, which has a dimension ∼2N/6 (instead of 2N/3+1 as for
the dimer Hilbert space). The ground state of systems up to 48 hexagons (144 kagome sites)
can be obtained with a standard Lanczos algorithm. The result was checked (with and without
holes) against direct calculations in the dimer Hilbert space for small systems (N � 48). We
investigated samples with N = 36, 48, 60, 72, 84, 108 and 144 kagome sites (Nh = 12, 16,
20, 24, 28, 36 and 48 hexagons). Periodic boundary conditions are used and the shapes of
these clusters are the same as those of [5].

Interestingly this representation allows one to compute the spectra of even a system pierced
by a single hole. Strictly speaking the QDM is not defined on such an odd sample, but the
non-degenerate representation of the µ algebra mentioned above can still be constructed. This
trick is useful for estimating the energy cost � of a single hole in a given sample.
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Figure 1. The hole forbids all resonance loops on hexagons 1 and 2 and suppresses some of the
loops around 3 and 4.

Figure 2. The energy cost � of a single hole in the µ QDM as a function of the number of
hexagons Nh .

3. Single-hole ground-state energy

The ground-state energy in the absence of holes is denoted as E0; E1 is the energy with a
single hole (two neighbouring µ removed). If 〈µiµ j 〉 correlations are neglected, the ground-
state energy would increase by 2〈µ〉 � 0.88 around each hole (the ground-state energy is
estimated to be �−0.44 per hexagon in the thermodynamic limit [5]). In fact, removing
two neighbouring µ operators increases the ground-state energy by � = E1 − E0 ∼ 0.6
(figure 2). It is easy to understand why the actual hole gap � is smaller than the naive estimate
above. Because of the anti-commutation relations between nearby µ operators (equation (4)),
the system cannot simultaneously achieve a minimal energy (i.e. µ = 1) on two neighbouring
hexagons. Removing some µ operators therefore decreases the frustration on their neighbours,
which can acquire in turn a larger expectation value (lower energy). This larger ‘polarization’
of the hexagons around the hole will enhance the frustration on their neighbours, and the
corresponding µ will have to reduce (slightly) their expectation value compared with the bulk
value. This mechanism produces spatial oscillations in 〈µ〉 (data not shown), oscillations
which have the same wavevector as the correlations which dominate in the bulk [5].

4. Two-hole ground-state energy

The difference between the energy E2(d) with two holes at distance d and the energy E0

without holes is shown in figure 3. In the analysis of [5] it appeared that the µ model has
significant local 〈µiµ j〉 correlations with a period of three hexagons. It is therefore convenient
to plot separately the data for Nh not a multiple of three and the others (Nh = 12, 24, 36
and 48), which do not frustrate the local order. At short distance, when the two holes belong
to a common hexagon, only three µ operators are removed from H and the energy cost is
roughly E2 − E0 ∼ 3

2 �. This happens for d = 1,
√

3 as well as for d = 2 when the two
holes are on opposite sites of a hexagon. This is a short-distance effect because for d > 2
the number of µ suppressed is always four. In other words, when two holes sit on the same
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Figure 3. The energy E2(d) of the ground state of the µ QDM in the presence of two holes at
distance d. In the top panels this energy is compared to the energy E0 of the system without holes
and in the lower panels E2(d) is compared to the hole-free energy E0 corrected by twice the energy
cost � = E1 − E0 of a single hole.

hexagon they minimize the number of loops which are ‘lost’ for resonances3. At intermediate
distances (2 � d �

√
12) the energy decreases with distance in a regular way for all samples.

In this range of d the behaviour is thus reminiscent of the strong hole repulsion observed in
the kagome Heisenberg model by Dommange et al [8].

For d � 4 the data suggest that the energy E2(d) goes to a constant. The values are
indeed close to the energy E0 + 2� (see the lower panels of figure 3) which is expected if
the dimer background is not mediating any interaction between the holes. We therefore argue
that the µ model is not confining static holes. It is interesting to note that in the samples
which do not frustrate the local order (right-hand panels of figure 3) the hole–hole interaction
seems to decay more slowly with distance than in the other samples. This rather slow decay
is not incompatible with the interesting suggestion [8] of a 1/d behaviour. In addition, weak
oscillations can be observed. They may be related to the oscillations of 〈µ〉 mentioned in the
previous section and to the (presumably) quasi-long-ranged correlations in 〈µiµ j〉c discussed
in [5].
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3 This effect can also be found, to a smaller extent, in the two-hole energies of the spin-1/2 model [8]: comparing
the two ways in which two holes can be at distance d = 2, the energy is always lower when they belong to the same
hexagon. There is, however, no strong reduction of E2 for d = 1 and

√
3 in the spin model as we have in the µ QDM.


